

INDIAN SCHOOL AL WADI AL KABIR

Dept. of Mathematics 2025 - 2026

Class XI – Mathematics

1	The range of the relation $R = \{(x, x^2) : x \text{ is a prime number less than 15} \}$ is				
	(a) $\{2, 3, 5, 7\}$		(b) {2, 3, 5,	11}	
	(c) {2, 3, 5, 7, 1	1, 13}	(d) {4, 9, 25	, 49, 121, 169}	
2	If the ordered pairs $(a + 2, 4) = (5, 2a + b)$ are equal, then the value of a and b are				are
			(c) ¢	(d) {2, 3}	
3	If there are 102 elements of B is		a set $A = \{1, 2, 3, \dots, n\}$	4} to a set B, then the n	umber of
	(a) 3	(b) 2	(c) 4	(d) 8	
4	For two sets A	and B. given n(A)	(B) = 6 and three	of the elements of A × B a	are (2, 5),
		en the remaining			(-, -,,
	(a) $(2, 6), (4, 5),$		(b) $(2, 4), (4, 8)$	3), (5, 6)	
	(c) $(2, 6), (4, 5),$	(4, 8)	(d) $(2, 4), (4, 4)$	5), (6, 8)	
5	If A and B are	two sets having m	and n elements,	respectively and having p	elements
				in be defined from A to B i	
	(a) 2^{m+n}	(b) 2^{m+n-p}	$(c) 2^{mn}$	$(d) 2^{mn-p}$	
6	The domain of $f(x) = \sqrt{25 - x^2}$ is				
			(c) [-5, 5]	(d) (-∞ 5)	
	(4) 10	(0) (0, 0)	(6) [6, 6]	(a) (, 0)	
7					
7	Find the domain and range of the relation R, where $R = \{(x + 1, x + 5)\}, x \in \{0, 1, 2, 3, 4, \dots\}$			2, 3, 4, 5	
	is (a) D = (0, 1, 2)	2 4 5) D = 10 1	9 2 4 51		
	(a) $D = \{0, 1, 2, 3, 4, 5\}, R = \{0, 1, 2, 3, 4, 5\}$				
	(b) D = {0, 1, 2, 3, 4, 5}, R = {5, 6, 7, 8, 9, 10} (c) D = {1, 2, 3, 4, 5, 6}, R = {0,1, 2, 3, 4, 5} (d) D = {1, 2, 3, 4, 5, 6}, R = {5, 6, 7, 8, 9, 10}				
	(a) D = (1, 2, 5,	4, 5, 6, 10 = (5, 6,	1, 0, 0, 10		
8	The set B is the	e range of a consta	ant function. Then,	n(B) equals	
	(a) 0	$(b) \ 1$	(c) 2	(d) 3	
9	If $n(A \cap B) = 5$,	then $n((A \times B) \cap$	(B × A)) is equal to).	
	(a) 5	(b) 20	(c) 25	(d) 16	

10	$A = \{a, b, c\}, B = \{a, b, c\}, B = \{a, b, c\}, A = \{a, b, c\}, B = $			elements in $(A \cup C) \times B$ is (d) 16
11	The range of the	function $f(x) = \frac{x}{1+x}$	$\overline{\mathbf{r}^2}$ is	
		$(b)\left[\frac{1}{2},\frac{1}{4}\right]$		$(d)\left(0,\frac{1}{2}\right)$
12	$If f\left(x - \frac{1}{x}\right) = x^2$	+ $\frac{1}{x^2}$, then $f(x) =$ (b) $x^2 - 2$		
	$(a)x^2+2$	$(b) x^2 - 2$	$(c) x^2 + \frac{1}{x^2}$	$(d) x^2 - \frac{1}{x^2}$
13	The domain of th	e real function $f(x)$	$=\frac{1}{\sqrt{x^2-64}}$ is:	
	$(a)\ (8,\infty)$	$(b) (-\infty, 8)$	(c) $(-\infty, -8)$	$(d) \ (-\infty, -8) \cup (8, \infty)$
14		relations from a set nts in the set B is:	A to a set B. If th	ne set A has 6 elements, then the
	(a) 32	(b) 2	(c) 128	$(d) \ 1024$
15	The domain of th	the function $f(x) = \sqrt{x}$	$\frac{1}{x-1} + \frac{1}{x-5}$ is:	
		(b)x<1		(d)x=1
16	The domain of th	the function $f(x) = \sqrt{1}$	$\frac{1}{(r-10)(12-r)}$ is	S.
		(b) (12, ∞)		
17	The range of the function $f(x) = \frac{3x+5}{4x-7}$ is:			
	(a) R	(b) R – $\{7\}$	$(c) \; \mathbf{R} - \left\{ \frac{1}{4} \right\}$	$(d) R - \left\{ \frac{3}{4} \right\}$
18		function $f(x) = x$ (b) [4, 5]		(d) $[5, \infty)$
19	The range of the	function $\frac{1}{2 - \cos 3x}$	is:	
	(a) $\left[\frac{1}{3},1\right)$	$(b)\left[\frac{1}{3},1\right]$	$(c)\left(\frac{1}{3},1\right]$	(d) $\left(\frac{1}{3},1\right)$

20	If $\left(\frac{x}{2}+1, y-\frac{2}{3}\right) = \left(\frac{3}{2}, \frac{1}{3}\right)$, find the values of x and y .		
21	If $f(x) = x^2$ and $g(x) = 2x + 1$ are two real functions, find $(f + g)(x)$.		
22	What is the domain of the real valued function $f(x) = \frac{1}{3x-2}$?		
23	If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$, find A and B .		
24	$A = \{1, 2, 3, 4\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $R = \{(x, y)$: the difference between x and y is odd, $x \in A$ and $y \in B\}$. Write R in roster form.		
25	Find the domain and range of the function $f(x) = \frac{1}{1-x^2}$		
26	If $f(x) = \frac{x-1}{x+1}$, where is a real function, then prove that $f(2x) = \frac{3f(x)+1}{f(x)+3}$		
27	Let $A = \{1, 2, 3,, 14\}$. Define a relation R from A to A by $R = \{(x, y): 3x - y = 0, \text{ where } x, y \in A\}$. Write domain, co-domain and range.		
28	Find the domain and range of the real function $f(x) = \sqrt{9-x^2}$		
29	Find the domain and range of the function f defined by $f(x) = \frac{1}{\sqrt{9-x^2}}$.		
30	Find the domain and range of the real function f defined by $f(x) = \sqrt{x-1}$.		
31	Define a relation R on the set N of natural numbers by $R = \{(x, y) : y = x + 5, x \text{ is a natural number less than } 4; x, y \in N\}.$		
32	Let $f(x) = x^2$ and $g(x) = 2x + 1$ be two real functions. Find $(f + g)(x)$, $(f - g)(x)$, $(fg)(x)$ and $\left(\frac{f}{g}\right)(x)$.		
33	The relation R is defined as $R = \{(x, x + 5)\} : x \in \{0, 1, 2, 3, 4, 5\}$. Write R in roster form. Write down the domain and range.		
34	If $A \times B = \{(a, 1), (b, 3), (a, 3), (b, 1), (a, 2), (b, 2)\}$, find A and B.		
	·		

35	If $A \times B = \{(a, 1), (a, 2), (a, 5), (b, 1), (b, 2), (b, 5)\}$, find $B \times A$.
36	Let A and B be two sets such that $A \times B$ consist of 6 elements. If three elements of $A \times B$ are $(1,4),(2,6),(3,6),$ find $A \times B.$
37	Let $R = \{(x, y) : x, y \in \mathbb{N} \text{ and } 2x + y = 9\}$, N being the set of natural numbers. Write R as the set of ordered pairs.
38	Write the domain of the function $f(x) = \frac{x^2 + 2x + 3}{x^2 - 5x + 6}$
39	Find the range of the relation defined by R— $\{(x, x + 3) : x \in \{0, 1, 2, 3, 4, 5\}.$
40	Let A = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Define a relation R from A to A defined by R = $\{(x, y): 2x - y = 0 \text{ where } x, y \in A\}$. Write in roster form.
41	Examine whether the relation $R = \{(2, 2), (2, 4), (3, 3), (4, 4)\}$ is a function. Justify your answer.
42	Let $A = \{1, 2\}$ and $B = \{a, b\}$. Write $A \times B$. How many subsets $A \times B$ will have?
43	Let $A = \{-1, 0, 2, 3\}$, $B = \{1, 2, 5, 8, 9, 10\}$ and $f = \{x, y\} : y = x^2 + 1, x \in A$ and $y \in B\}$. List the element of f .
44	Let $A = \{1, 2, 3, 4\}$ and $S = \{(a, b) : a \in A, b \in A, a \text{ divides } b\}$. Write the elements of S .
45	Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.
46	If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of x and y .
47	If f and g are two functions defined on real numbers such that $f(x) = 3x + 1$ and $g(x) = x^2 + 2$, then find
	$(i) f + g$ $(ii) f - g$ $(iii) fg$ $(iv) \frac{f}{g}$
48	Find the domain and range of the function $f(x) = \sqrt{1-x^2}$

Answers

1	D
5	С
9	С
13	D
17	D

В
C
В
В
A

3	В
7	D
11	A
15	С
19	В

4	A
8	В
12	A
16	С
20	x = 1, y = 1

21	$x^2 + 2x + 1$		Domain $(f) = R - \left\{\frac{2}{3}\right\}$	
23	$A = \{a, b\} \text{ and } B = \{x, y\}.$		24 R in roster form is {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (4, 9)}.	
25	Domain of $f = R - \{-1, 1\}$.	f = (- <	∞ , 0) \cup [1, ∞).	
27	Domain = {1, 2, 3, 4}, co-domain	=A ar	nd range = $\{3, 6, 9, 12\}$.	
28			nge of $f(x)$ is [0, 3].	
29	Domain (f) } = $(-3, 3)$. Range of $f = \left[\frac{1}{3}, \infty\right)$.			
30	Domain $(f) = [1, \infty)$	ange (;	$f) = [0, \infty).$	
31	Domain = {1, 2, 3} Range = {6, 7, 8}	(f-g) (fg) $(x$	$f(x) = f(x) + g(x) = x^{2} + 2x + 1$ $f(x) = f(x) - g(x) = x^{2} - (2x + 1) = x^{2} - 2x - 1$ $f(x) = f(x) g(x) = x^{2} (2x + 1) = 2x^{3} + x^{2}$ $f(x) = \frac{x^{2}}{2x + 1}, x \neq -\frac{1}{2}$	
33	Domain = {0, 1, 2, 3, 4, 5} Range = {5, 6, 7, 8, 9, 10}		$A = \{a, b\}, B = \{1, 2, 3\}$	
35	$B \times A = \{(1, a), (2, a), (5, a), (1, b), (2, b), (5, b)\}$			
36	$A \times B = \{(1, 4), (1, 6), (2, 4), (2, 6), (2,$), (3, 4	4), (3, 6)}.	
37	$R = \{(1, 7), (2, 5), (3, 3), (4, 1)\}$ 38		x = 2, 3	
39	R = {3, 4, 5, 6, 7, 8}		$R = \{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)\}.$	
41	R is not a function because 2 have two images.			
42	$A \times B = \{(1, a), (1, b), (2, a), (2, b)\}.$ No. of subsets = $2^4 = 16$.			
43	$f = \{(-1, 2), (0, 1), (2, 5), (3, 10)\}$			
44	$S = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$			
45	No. of relations = No. subsets of $A \times B = 2^6 = 64$.			
46	5 x = 2, y = 1.			

47 (i)
$$(f+g)(x) = f(x) + g(x) = x^2 + 3x + 3$$

$$\left(ii\right)\left(f-g\right)\left(x\right)=f\left(x\right)-g\left(x\right)=3x-x^{2}-1$$

(iii)
$$(fg)(x) = f(x)g(x)$$

= $3x^3 + x^2 + 6x + 2$

$$(iv)\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{3x+1}{x^2+1}.$$

$$f = \{x \in \mathbf{R} : -1 \le x \le 1\} = [-1, 1].$$

Range =
$$\{y \in \mathbb{R} : 0 \le y \le 1\} = [0, 1].$$